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Abstract
Localized oscillations appear both in ordered nonlinear lattices (breathers) and
in disordered linear lattices (Anderson modes). Numerical studies on a class of
two-dimensional systems of the Klein–Gordon type show that there exist two
different types of bifurcation in the path from nonlinearity–order to linearity–
disorder: inverse pitchforks, with or without period doubling, and saddle-
nodes. This was discovered for a one-dimensional system in a previous work
of Archilla, MacKay and Marin. The appearance of a saddle-node bifurcation
indicates that nonlinearity and disorder begin to interfere destructively and
localization is not possible. In contrast, the appearance of a pitchfork bifurcation
indicates that localization persists.

PACS numbers: 6320P, 6320R

1. Introduction

Some models of spatially discrete systems consider particles with anharmonic potentials and,
usually, the distribution of masses and couplings are supposed to be spatially homogeneous
(nonlinear ordered systems). Other models refer to particles with harmonic interactions and a
random distribution of masses and couplings (linear disordered systems).

Time-periodic and spatially localized oscillations (LOs) appear in these dynamical systems
due to different factors: (i) in nonlinear ordered systems of weakly coupled oscillators, LOs are
caused by nonlinearity and they are called breathers [1–3]; (ii) in linear disordered systems,
LOs are a consequence of disorder, and they are referred to as Anderson modes [4]. In nonlinear
disordered systems, localization can be produced by either of the two causes. This is why, in
this paper, we refer to them as LOs.

For a system with both nonlinearity and disorder, it is of great importance to know which
is the dominant mechanism producing localization. This problem has been the object of recent
research [5–7], and different approaches have been proposed.

One approach considers systems with fixed degrees of nonlinearity and disorder, and
LOs are studied varying the breather frequency [6, 7]. Another approach considers a class of

0305-4470/01/160221+10$30.00 © 2001 IOP Publishing Ltd Printed in the UK L221



L222 Letter to the Editor

systems such that both nonlinearity and disorder can be varied continuously from the nonlinear
ordered limit to the linear disordered limit. By means of the study of a class of one-dimensional
models of the Klein–Gordon type, it has been proved numerically [5] that breathers can be
continuously connected to Anderson modes.

The studies developed in disordered anharmonic media have been carried out in one-
dimensional systems. The next step could be to address the problem in two-dimensional
systems, which have been widely studied without disorder [8–10]. These models can be used
to explain some properties of layers in solids [11,12], high-temperature superconductors [13]
and photonic crystal waveguides [14]. Thus, it can be interesting to address the question of
whether in these two-dimensional systems there also exists a continuous path that transforms
breathers into Anderson modes. This study would allow us to clarify the interplay between
the two mechanisms of localization in two-dimensional lattices.

In this paper, we have found an affirmative answer to the question about the existence of
a connection of some families of discrete breathers to Anderson modes, in two-dimensional
lattices.

2. The model

We study an anharmonic Hamiltonian square lattice of the Klein–Gordon type, i.e. with an
on-site potential. The Hamiltonian is

H =
m∑

n1n2=1

1
2p2

n1n2
+ 1

2ω2
n1n2

u2
n1n2

− su3
n1n2

+ 1
2ε

∑
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1|=1

∑
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2|=1

(un1n2 − un′
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′
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)2 (1)

where un1n2 are the coordinates of the particles with respect to their equilibrium positions;
ωn1n2 are the frequencies of the small-amplitude oscillation of the particles; −s u3

n1n2
is the

anharmonic part of the on-site potential for the particle (n1, n2); s is a parameter which
describes the degree of anharmonicity and takes its value in [0, 1], s = 0 being the harmonic
disordered case and s = 1 the anharmonic ordered case. The coupling potential is harmonic
and nearest neighbour and ε is a coupling parameter.

The disorder is implemented by means of the curvatures ω2
n1n2

of the local potentials at their
minima. Since the masses have all been chosen equal to unity, this gives rise to frequencies
ωn1n2 . Suppose they take two values randomly distributed, say

ωn1n2 = ω0

(
1 + ρ

rn1n2

2

)
(2)

where ρ is a disorder parameter that takes its value in the interval [0, 1] and rn1n2 the components
of a random vector which are either +1 or −1. At ρ = 0, there is no disorder and all the
frequencies are equal to ω0, which is taken with unit value. At ρ = 1, the most disordered
case, the frequencies are either 0.5ω0 or 1.5ω0. This is the most important difference between
our model and that studied by Kopidakis and Aubry [6], since they take a continuous distribution
of random frequencies.

The parameter ρ is considered to be a monotonic function ρ = ρ(s) of the nonlinearity s,
with ρ(0) = 1 and ρ(1) = 0, giving a path from the anharmonic ordered case to the harmonic
disordered case. The paths used in this paper are of the type

ρ(s) = 1 − sq q > 0 (3)

and specifically we have used the values q = 1/4 and 1.
The dynamical equations of the system are (ṗn1n2 ≡ ün1n2 = −∂H/∂un1n2 )

Fn1n2(u, s, ε) = ün1n2 + ω2
n1n2

un1n2 − 3 s u2
n1n2

+ ε(4un1n2 − un1−1 n2 − un1+1 n2 − un1 n2+1 − un1 n2−1) = 0. (4)
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Breather and Anderson mode solutions are obtained using the same methods as in [5]
applied to two-dimensional systems. These are explained in section 3.

We have explored two different sample breather configurations at the nonlinear ordered
limit (s = 1). From these configurations (shown in figures 1 and 10), the value of the
parameter s is varied until it reaches the linear disordered limit (s = 0). In this path, we
keep constant the action I of the system1 and the random vector rn1n2 (defined in equation (2)).

3. Numerical methods for breathers and Anderson modes

3.1. Breather solutions

In order to obtain breathers, we use a variant [5] of the numerical methods described in [15–17].
We denote by E2

s (ωb) the space of time-periodic, time-reversible solutions of frequency
ωb, with continuous second derivative. Therefore the functions un1n2(t) can be approximated
by truncated Fourier series of the form

un1n2(t) =
km∑

k=−km

zk
n1n2

eikωbt . (5)

The time-symmetry property ofun1n2(t) and the fact that the operator in (4) is real determine

un1n2(t) = z0 +
k=km∑
k=1

2zk
n1n2

cos(kωbt). (6)

Using the Newton–Raphson method a periodic solution with frequency ωb is found for an
isolated oscillator. The breather is obtained from the anticontinuous limit, where a particle is
oscillating with that frequency while the others are at rest, varying the coupling parameter ε

from ε = 0 to the desired value.

3.2. Anderson mode solutions

For a harmonic on-site potential, the dynamical equations of the system (equation (4)) can be
written

ün1n2 = −ω(s)2
n1n2

un1n2 − ε(4un1n2 − un1−1 n2 − un1+1 n2 − un1 n2+1 − un1 n2−1) (7)

or in an abbreviated notation

ü = −�(s)2u. (8)

The spectrum of �(s)2 consists of m2 positive eigenvalues, ω̃k(s)
2, which correspond to

the square of the phonon frequencies for a particular value of s. The eigenvectors of �(s)2,
vk(s), are called Anderson modes and are spatially localized (cf [18]) for our particular disorder
configuration. Thus, equation (8) has time-reversible, spatially localized, periodic solutions:

uk
n1n2

(t) = cos(ω̃kt)v
k
n1n2

. (9)

4. Bifurcation analysis

We have analysed a system with Hamiltonian (1), taking ε = 0.01 and m = 17, so that the
number of particles is 17 × 17, which proves to be large enough to observe LOs. The number
of Fourier components of the solution is ten, which may appear small, but truncation has been

1 In this case, the action is the phase-space’s area, i.e. I = ∮
p dq.
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carried out when the last Fourier coefficient is ∼10−6 times the magnitude of the largest one.
Besides, when the degree of linearity increases, this ratio decreases.

The initial seed used in the continuation procedure at s = 1 is the single-breather solution
obtained from the uncoupled limit, i.e. ε = 0, with all the particles at rest except the central
one (n1 = 9, n2 = 9), which oscillates with phase 0 at t = 0 and frequency ωb = 0.85. This
allows a relatively large window of values outside the linear mode band [2]. The resulting
value of the action is I = 0.1035, and the profile of this breather is shown in figure 1.

It could be expected that the bifurcations we obtained in the path from the ‘breather limit’
to the ‘Anderson limit’ were either inverse pitchforks or saddle nodes because an enormous
number of solutions must be connected to a relatively small number of them [19]. The
number of possible LOs in a square lattice of m × m particles, at the nonlinear ordered limit
(multibreathers), is (9m −1)/2, while the number of possible LOs at the linear disordered limit
(Anderson modes) is only m2.

We present now the results obtained for different paths (3) from the nonlinear ordered
case (s = 1) to the linear disordered case (s = 1):

0
5

10
15

0

5

10

15

0

0.05

0.1

0.15

0.2

0.25

Figure 1. Profile of the breather used as a seed for obtaining pitchfork bifurcations (ωb = 0.85
and s = 1).
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Figure 2. Profile of the Anderson mode which is at the end of the 1/4 path.
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Figure 3. LO before (s = 0.265) and after (s = 0.264) the bifurcation. 1/4 path.

Figure 4. Frequencies of the LO (also twice its frequency) and all the linearized modes about
equilibrium for the 1/4 path. It can be seen how the breather frequency enters the phonon band
(equation (7)) when the continuation parameter decreases, concretely between s = 0.265 and
0.264.

4.1. Path q = 1/4

The path begins taking at s = 1 the breather in figure 1. The continuation finishes at s = 0 in
the Anderson mode shown in figure 2. When s decreases there exists a bifurcation for a value
of s in the interval (0.264, 0.265). Figure 3 shows the breather profile just before and after
this bifurcation.

At the bifurcation point, the LO frequency enters the linearized mode band (figure 4),
which enables us to confirm that we have found a bifurcation.

The bifurcation is an imperfect pitchfork, which means that the branches are slightly
separated, as can be seen in figure 5. The central branch corresponds to the initially continued
solution, while the outer branches are obtained by adding to or subtracting from the solution at
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Figure 5. Bifurcation diagram in the 1/4 path.
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Figure 6. LO just before bifurcation (s = 0.265) in the upper and lower branches of the pitchfork.
1/4 path.

a point of the central branch (not very close to the bifurcation) the eigenvector corresponding to
the centre subspace, and using the new vector as a seed for the Newton method. The LOs at the
end of the outer branches are shown in figure 6. The main difference between the outer branches
and the central one is the existence of a ‘hump’ centred in the particle (n1 = 13, n2 = 8).

A linear stability analysis [2] of the solutions shows that all the branches are linearly
stable.

4.2. Linear path

This path begins taking at s = 1 the same breather as before (shown in figure 1). The
continuation finishes at s = 0 in the Anderson mode shown in figure 7. When s decreases there
exists an inverse period-doubling bifurcation for a value of s within the interval (0.336, 0.337).
At this value, all the odd Fourier components of the solution become zero.



Letter to the Editor L227

0
5

10
15

0

5

10

15

–0.04

–0.03

–0.02

–0.01
0

0.01

0.02

0.03

0.04

w=1.5232

0
5

10
15

20

0
5

10
15

20
– 0.04

– 0.02

0

0.02

0.04

0.06

0.08

0.1

Figure 7. Profile of the Anderson mode which is at the
end of the linear path.

Figure 8. Breather profile just before bifurcation (s =
0.337) in the lower branch. The profile in the upper
branch is symmetric with respect to the XY -plane. Linear
path.
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Figure 9. Inverse period-doubling bifurcation in the linear path.

In figure 8 is shown the breather profile before the bifurcation, which corresponds to the
lower branch in the bifurcation diagram (figure 9). The profile of the upper branch breather
is symmetric with that represented in figure 8, because the bifurcation is an inverse period
doubling. The profile of the breather after the bifurcation, i.e. from s = 0.336 to 0, is similar
to the Anderson mode in figure 7. The central branch of the pitchfork bifurcation is a LO,
which delocalizes when s increases. Numeric calculations show that all these branches are
linearly stable.
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Figure 10. Profile of the breathers corresponding to the upper and lower branch at the turning point
in the linear path for s = 1.
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Figure 11. Turning point in the linear path.

4.3. Saddle node in the linear path

In our system, for all the values of q with the same random vector, and starting with the same
one-site breather, a pitchfork bifurcation is obtained. Saddle nodes must appear with the initial
breather located in a different site.

Thus, we have chosen as the seed solution at s = 1 the breather in figure 10. It has the
particle (13, 13) excited and oscillates with phase zero at t = 0 and frequency ωb = 0.85.
It corresponds to the lower branch in the bifurcation diagram (figure 11). The breather
corresponding to the upper branch has three peaks, in (13, 13), (13, 14) and (14, 14) (figure 10),
and oscillates with ωb = 0.9701. The LOs at the lower branch in the bifurcation diagram are
linearly stable and the LOs at the upper one are unstable.
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Figure 12. Breather profile at the turning point (s =
0.9301). Linear path.

The bifurcation occurs at a value of s within the interval (0.9300, 0.9301). At this value,
the breather has the profile shown in figure 12.

5. Conclusions

We have studied the bifurcations that appear in a class of two-dimensional disordered systems
in the path from nonlinearity–order to linearity–disorder. We have obtained two different
types: saddle nodes and inverse pitchforks, either with or without inverse period doubling.

It would be interesting to find out which multibreathers, and in which conditions, can be
connected to Anderson modes. This is an impossible numerical task, because in a system with
m = 17 the number of multibreathers is ∼1016.

There are several open questions: Why does a period-doubling bifurcation appear? What
is the influence of keeping the action constant? Are these properties maintained by other
classes of two-dimensional lattices, that is, with different types of anharmonicity or with
random couplings between the particles? The answers need more analytical and numerical
study, which will be the object of further research.
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